Cortical neuromagnetic activation accompanying two types of voluntary finger extension.

نویسندگان

  • Hideaki Onishi
  • Toshio Soma
  • Shigeki Kameyama
  • Makoto Oishi
  • Ayataka Fuijmoto
  • Mineo Oyama
  • Adriane A Furusawa
  • Yukio Kurokawa
چکیده

We examined the amplitude and latency of movement-related cerebral field (MRCF) waveforms, the generator and afferent feedback of movement-evoked field 1 (MEF1), and the relationship between motor field neuromagnetic activity and electromyographic activity during performance of two types of voluntary index extension. Eight healthy, right-handed male volunteers participated in this study. Experiments for each subject consisted of recording of MRCFs following two types of finger movement. One (Task 1) involved voluntary extension of the right index finger to about 40 degrees . In the second (Task 2), an elastic band was placed on the right index fingertip, producing a resistance of about 1.5 times the electromyographic activity associated with the voluntary movement yielding extension to approximately 40 degrees . Peak amplitude and the ECD moment of the motor field differed significantly between the two tasks. In Task 2, the electromechanical delay from EMG onset to movement onset (77.8+/-16.2) was longer than in Task 1 (44.4+/-10.4). However, the latency from EMG onset to MEF1 peak was 87.6+/-8.5 ms in Task 2, and did not differ significantly from that in Task 1 (88.6+/-8.5). The ECDs of MEF1 were located significantly medial to N20 m and lateral and posterior to the motor field. These findings suggest that the ECD of MEF1 is located in area 3b, but is slightly different from N20 m, and that this MEF1 component activation is due not to the onset of joint movement but to that of muscular contraction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatiotemporal mapping of cortical activity accompanying voluntary movements using an event-related beamforming approach.

We describe a novel spatial filtering approach to the localization of cortical activity accompanying voluntary movements. The synthetic aperture magnetometry (SAM) minimum-variance beamformer algorithm was used to compute spatial filters three-dimensionally over the entire brain from single trial neuromagnetic recordings of subjects performing self-paced index finger movements. Images of instan...

متن کامل

Neuromagnetic Characterization of the Human Secondary Somatosensory Cortex

This thesis aims to characterize functions of the secondary somatosensory cortex SII in humans by means of neuromagnetic recordings. It starts with a review of literature about methodological considerations concerning the generation of neuromagnetic fields and how they can be measured and modeled. Then follows a brief overview of the somatosensory system, its receptors, ascending pathways, and ...

متن کامل

Neuromagnetic activation following active and passive finger movements

The detailed time courses of cortical activities and source localizations following passive finger movement were studied using whole-head magnetoencephalography (MEG). We recorded motor-related cortical magnetic fields following voluntary movement and somatosensory-evoked magnetic fields following passive movement (PM) in 13 volunteers. The most prominent movement-evoked magnetic field (MEF1) f...

متن کامل

Enhanced extrastriate activation during observation of distorted finger postures.

Hand and finger postures of other people are important body language cues that strongly contribute to the observer's decision about the person's intentions, thoughts, and attentional state. We compared neuromagnetic cortical activation elicited by color images of natural and distorted finger postures. The distorted postures contained computer-deformed joint angles and thereby easily caught the ...

متن کامل

Motor-Cortical Interaction in Gilles de la Tourette Syndrome

BACKGROUND In Gilles de la Tourette syndrome (GTS) increased activation of the primary motor cortex (M1) before and during movement execution followed by increased inhibition after movement termination was reported. The present study aimed at investigating, whether this activation pattern is due to altered functional interaction between motor cortical areas. METHODOLOGY/PRINCIPAL FINDINGS 10 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research

دوره 1123 1  شماره 

صفحات  -

تاریخ انتشار 2006